login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224416
Least prime p such that the polynomial sum_{k=0}^n C_k*x^{n-k} is irreducible modulo p, where C_k denotes the Catalan number binomial(2k,k)/(k+1).
6
2, 3, 2, 3, 17, 7, 47, 3, 53, 5, 137, 109, 79, 11, 37, 7, 59, 13, 53, 251, 251, 101, 467, 149, 79, 3, 83, 61, 239, 31, 79, 73, 73, 373, 199, 5, 337, 167, 17, 683, 523, 269, 37, 163, 431, 163, 163, 7, 487, 7, 167, 163, 197, 1549, 137, 503, 139, 263, 151, 283
OFFSET
1,1
COMMENTS
Conjecture: (i) a(n) does not exceed n^2+n+5 for each n>0, and the Galois group of sum_{k=0}^n C_k*x^{n-k} over the rationals is isomorphic to the symmetric group S_n.
(ii) For any positive integer n, the polynomial sum_{k=0}^n binomial(2k,k)*x^{n-k} is irreducible modulo some prime if and only if n is not of the form 2k(k+1), where k is a positive integer.
(iii) For any positive integer n, the polynomial sum_{k=0}^n T_k*x^{n-k} is irreducible modulo some prime not exceeding n^2+n+5, where T_k referes to the central trinomial coefficient A002426(k) which is the coefficient of x^k in the expansion of (x^2+x+1)^k.
LINKS
EXAMPLE
a(10) = 5 since sum_{k=0}^{10} C_k*x^{n-k} irreducible modulo 5 but reducible modulo any of 2 and 3.
Note also that a(11) = 137 coincides with 11^2+11+5.
MATHEMATICA
A[n_, x_]:=A[n, x]=Sum[Binomial[2k, k]/(k+1)*x^(n-k), {k, 0, n}]
Do[Do[If[IrreduciblePolynomialQ[A[n, x], Modulus->Prime[k]]==True, Print[n, " ", Prime[k]]; Goto[aa]], {k, 1, PrimePi[n^2+n+5]}];
Print[n, " ", counterexample]; Label[aa]; Continue, {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 06 2013
STATUS
approved