login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223833
Number of n X 3 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.
1
7, 22, 48, 89, 149, 232, 342, 483, 659, 874, 1132, 1437, 1793, 2204, 2674, 3207, 3807, 4478, 5224, 6049, 6957, 7952, 9038, 10219, 11499, 12882, 14372, 15973, 17689, 19524, 21482, 23567, 25783, 28134, 30624, 33257, 36037, 38968, 42054, 45299, 48707, 52282
OFFSET
1,1
COMMENTS
Column 3 of A223838.
LINKS
FORMULA
Empirical: a(n) = (2/3)*n^3 + (3/2)*n^2 + (35/6)*n - 1.
Conjectures from Colin Barker, Aug 23 2018: (Start)
G.f.: x*(7 - 6*x + 2*x^2 + x^3) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)
EXAMPLE
Some solutions for n=3:
..0..1..0....1..1..0....1..1..1....1..0..0....0..0..1....1..0..0....0..1..0
..0..1..0....1..1..1....1..1..1....1..0..0....0..1..1....1..1..1....1..1..0
..1..1..0....1..1..1....1..1..1....1..0..0....1..1..1....1..1..1....1..1..1
CROSSREFS
Cf. A223838.
Sequence in context: A331229 A299283 A244243 * A014073 A288114 A369549
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 27 2013
STATUS
approved