login
A223834
Number of n X 4 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.
1
11, 46, 118, 249, 471, 824, 1356, 2123, 3189, 4626, 6514, 8941, 12003, 15804, 20456, 26079, 32801, 40758, 50094, 60961, 73519, 87936, 104388, 123059, 144141, 167834, 194346, 223893, 256699, 292996, 333024, 377031, 425273, 478014, 535526, 598089
OFFSET
1,1
COMMENTS
Column 4 of A223838.
LINKS
FORMULA
Empirical: a(n) = (1/3)*n^4 + (2/3)*n^3 + (31/6)*n^2 + (71/6)*n - 9 for n>1.
Conjectures from Colin Barker, Aug 23 2018: (Start)
G.f.: x*(11 - 9*x - 2*x^2 + 9*x^3 + x^4 - 2*x^5) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>6.
(End)
EXAMPLE
Some solutions for n=3:
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..1..1..0
..0..0..0..0....0..0..0..0....0..1..0..0....1..1..1..0....1..1..1..0
..0..1..1..0....0..1..1..1....0..1..1..0....1..1..1..0....1..1..1..0
CROSSREFS
Cf. A223838.
Sequence in context: A063158 A081587 A377663 * A359096 A143059 A224142
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 27 2013
STATUS
approved