login
Number of n X 4 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.
1

%I #7 Aug 23 2018 08:43:29

%S 11,46,118,249,471,824,1356,2123,3189,4626,6514,8941,12003,15804,

%T 20456,26079,32801,40758,50094,60961,73519,87936,104388,123059,144141,

%U 167834,194346,223893,256699,292996,333024,377031,425273,478014,535526,598089

%N Number of n X 4 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.

%C Column 4 of A223838.

%H R. H. Hardin, <a href="/A223834/b223834.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = (1/3)*n^4 + (2/3)*n^3 + (31/6)*n^2 + (71/6)*n - 9 for n>1.

%F Conjectures from _Colin Barker_, Aug 23 2018: (Start)

%F G.f.: x*(11 - 9*x - 2*x^2 + 9*x^3 + x^4 - 2*x^5) / (1 - x)^5.

%F a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>6.

%F (End)

%e Some solutions for n=3:

%e ..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..1..1..0

%e ..0..0..0..0....0..0..0..0....0..1..0..0....1..1..1..0....1..1..1..0

%e ..0..1..1..0....0..1..1..1....0..1..1..0....1..1..1..0....1..1..1..0

%Y Cf. A223838.

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 27 2013