login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244243
Number of partitions of n into 7 parts such that every i-th smallest part (counted with multiplicity) is different from i.
2
1, 7, 22, 48, 88, 140, 207, 291, 389, 508, 646, 809, 995, 1212, 1457, 1742, 2061, 2425, 2833, 3295, 3808, 4386, 5024, 5737, 6522, 7394, 8349, 9406, 10559, 11827, 13208, 14721, 16361, 18153, 20090, 22198, 24472, 26938, 29591, 32462, 35543, 38866, 42427, 46258
OFFSET
35,2
LINKS
FORMULA
Conjectures from Chai Wah Wu, Apr 18 2024: (Start)
a(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) - a(n-8) + a(n-10) + a(n-11) + 2*a(n-12) - 2*a(n-16) - a(n-17) - a(n-18) + a(n-20) + a(n-21) + a(n-23) - a(n-26) - a(n-27) + a(n-28) for n > 77.
G.f.: x^35*(-x^42 + 2*x^36 + 2*x^35 + 2*x^34 + 2*x^33 + 4*x^32 + x^31 + 2*x^30 - 3*x^29 - 8*x^28 - 14*x^27 - 25*x^26 - 24*x^25 - 16*x^24 + 4*x^23 + 29*x^22 + 50*x^21 + 58*x^20 + 56*x^19 + 28*x^18 - 8*x^17 - 47*x^16 - 75*x^15 - 76*x^14 - 60*x^13 - 28*x^12 + 10*x^11 + 42*x^10 + 55*x^9 + 53*x^8 + 33*x^7 + 14*x^6 - 5*x^5 - 18*x^4 - 19*x^3 - 14*x^2 - 6*x - 1)/(x^28 - x^27 - x^26 + x^23 + x^21 + x^20 - x^18 - x^17 - 2*x^16 + 2*x^12 + x^11 + x^10 - x^8 - x^7 - x^5 + x^2 + x - 1). (End)
CROSSREFS
Column k=7 of A238406.
Sequence in context: A197059 A331229 A299283 * A223833 A014073 A288114
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 23 2014
STATUS
approved