The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244242 Number of partitions of n into 6 parts such that every i-th smallest part (counted with multiplicity) is different from i. 2
 1, 6, 16, 31, 52, 76, 107, 143, 184, 233, 289, 354, 427, 512, 606, 716, 835, 972, 1122, 1292, 1476, 1685, 1909, 2161, 2432, 2734, 3057, 3417, 3799, 4222, 4673, 5168, 5693, 6270, 6879, 7545, 8249, 9014, 9821, 10698, 11619, 12616, 13665, 14795, 15981, 17259 (list; graph; refs; listen; history; text; internal format)
 OFFSET 27,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 27..1000 FORMULA Conjectures from Chai Wah Wu, Apr 18 2024: (Start) a(n) = a(n-1) + a(n-2) - a(n-5) - 2*a(n-7) + a(n-9) + a(n-10) + a(n-11) + a(n-12) - 2*a(n-14) - a(n-16) + a(n-19) + a(n-20) - a(n-21) for n > 57. G.f.: x^27*(-x^30 + 2*x^25 + 2*x^24 + 2*x^23 + 4*x^22 + 2*x^21 + x^20 - 9*x^19 - 12*x^18 - 16*x^17 - 12*x^16 + x^15 + 13*x^14 + 24*x^13 + 25*x^12 + 20*x^11 + 3*x^10 - 11*x^9 - 23*x^8 - 22*x^7 - 15*x^6 - 6*x^5 + 5*x^4 + 9*x^3 + 9*x^2 + 5*x + 1)/((x - 1)^6*(x + 1)^3*(x^2 + 1)*(x^2 - x + 1)*(x^2 + x + 1)^2*(x^4 + x^3 + x^2 + x + 1)). (End) CROSSREFS Column k=6 of A238406. Sequence in context: A115007 A005891 A108182 * A092286 A301723 A288113 Adjacent sequences: A244239 A244240 A244241 * A244243 A244244 A244245 KEYWORD nonn AUTHOR Alois P. Heinz, Jun 23 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 09:32 EDT 2024. Contains 372745 sequences. (Running on oeis4.)