login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244242
Number of partitions of n into 6 parts such that every i-th smallest part (counted with multiplicity) is different from i.
2
1, 6, 16, 31, 52, 76, 107, 143, 184, 233, 289, 354, 427, 512, 606, 716, 835, 972, 1122, 1292, 1476, 1685, 1909, 2161, 2432, 2734, 3057, 3417, 3799, 4222, 4673, 5168, 5693, 6270, 6879, 7545, 8249, 9014, 9821, 10698, 11619, 12616, 13665, 14795, 15981, 17259
OFFSET
27,2
LINKS
FORMULA
Conjectures from Chai Wah Wu, Apr 18 2024: (Start)
a(n) = a(n-1) + a(n-2) - a(n-5) - 2*a(n-7) + a(n-9) + a(n-10) + a(n-11) + a(n-12) - 2*a(n-14) - a(n-16) + a(n-19) + a(n-20) - a(n-21) for n > 57.
G.f.: x^27*(-x^30 + 2*x^25 + 2*x^24 + 2*x^23 + 4*x^22 + 2*x^21 + x^20 - 9*x^19 - 12*x^18 - 16*x^17 - 12*x^16 + x^15 + 13*x^14 + 24*x^13 + 25*x^12 + 20*x^11 + 3*x^10 - 11*x^9 - 23*x^8 - 22*x^7 - 15*x^6 - 6*x^5 + 5*x^4 + 9*x^3 + 9*x^2 + 5*x + 1)/((x - 1)^6*(x + 1)^3*(x^2 + 1)*(x^2 - x + 1)*(x^2 + x + 1)^2*(x^4 + x^3 + x^2 + x + 1)). (End)
CROSSREFS
Column k=6 of A238406.
Sequence in context: A115007 A005891 A108182 * A092286 A301723 A288113
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 23 2014
STATUS
approved