login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of n X 3 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.
1

%I #7 Aug 23 2018 08:29:17

%S 7,22,48,89,149,232,342,483,659,874,1132,1437,1793,2204,2674,3207,

%T 3807,4478,5224,6049,6957,7952,9038,10219,11499,12882,14372,15973,

%U 17689,19524,21482,23567,25783,28134,30624,33257,36037,38968,42054,45299,48707,52282

%N Number of n X 3 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.

%C Column 3 of A223838.

%H R. H. Hardin, <a href="/A223833/b223833.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = (2/3)*n^3 + (3/2)*n^2 + (35/6)*n - 1.

%F Conjectures from _Colin Barker_, Aug 23 2018: (Start)

%F G.f.: x*(7 - 6*x + 2*x^2 + x^3) / (1 - x)^4.

%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.

%F (End)

%e Some solutions for n=3:

%e ..0..1..0....1..1..0....1..1..1....1..0..0....0..0..1....1..0..0....0..1..0

%e ..0..1..0....1..1..1....1..1..1....1..0..0....0..1..1....1..1..1....1..1..0

%e ..1..1..0....1..1..1....1..1..1....1..0..0....1..1..1....1..1..1....1..1..1

%Y Cf. A223838.

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 27 2013