The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A223690 Petersen graph (8,2) coloring a rectangular array: number of nX6 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph 1
 3888, 361440, 40075632, 4777430544, 591191889840, 74643295612752, 9525534763343040, 1222395248538717264, 157321448699750643600, 20277258143648241944160, 2615539308991446742728768 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Column 6 of A223692 LINKS R. H. Hardin, Table of n, a(n) for n = 1..210 FORMULA Empirical: a(n) = 401*a(n-1) -67694*a(n-2) +6504059*a(n-3) -403267020*a(n-4) +17269251540*a(n-5) -532092758621*a(n-6) +12101188571236*a(n-7) -206320877728788*a(n-8) +2658718377091780*a(n-9) -25945070103424624*a(n-10) +190941914146453840*a(n-11) -1048187391730269952*a(n-12) +4206893801397638144*a(n-13) -11933406529828884480*a(n-14) +22565682238558950400*a(n-15) -25420286353912320000*a(n-16) +12855838934016000000*a(n-17) for n>18 EXAMPLE Some solutions for n=3 ..0..1..0..1..0..1....0..1..0..1..0..7....0..1..2..3..4..3....0..1..2..3..2.10 ..0..1..2..1..9.15....0..1..9..1..0..1....0..1..2..3..2..3....0..1..2..3..2..1 ..2..3..2..1..9.11....9..1..2..1..0..8....2..3.11..3..4.12....9..1..2..3..2..3 CROSSREFS Sequence in context: A186135 A223597 A223438 * A186555 A185862 A242863 Adjacent sequences: A223687 A223688 A223689 * A223691 A223692 A223693 KEYWORD nonn AUTHOR R. H. Hardin Mar 25 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 13:12 EDT 2023. Contains 365647 sequences. (Running on oeis4.)