login
A223687
Petersen graph (8,2) coloring a rectangular array: number of n X 3 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph.
1
144, 2304, 37008, 595584, 9594000, 154616832, 2492365968, 40180445568, 647800215696, 10444288589568, 168392298756240, 2714990519274624, 43773950520548496, 705771016545286656, 11379212680977220752
OFFSET
1,1
COMMENTS
Column 3 of A223692.
LINKS
FORMULA
Empirical: a(n) = 24*a(n-1) - 127*a(n-2).
Conjectures from Colin Barker, Aug 22 2018: (Start)
G.f.: 144*x*(1 - 8*x) / (1 - 24*x + 127*x^2).
a(n) = (72*((12-sqrt(17))^n*(-31+8*sqrt(17)) + (12+sqrt(17))^n*(31+8*sqrt(17)))) / (127*sqrt(17)).
(End)
EXAMPLE
Some solutions for n=3:
.14..8.14...13..5..6...14..8.14...13.15..9....0..8.14....7.15..9....3.11.13
.10.12.14....6..5..6....0..8.10....9.15.13...14.12..4...13.15.13....3.11.13
.14..8..0....4..5..4...10..8.10...13.11..9....4..5.13...13.11..3...13.15..9
CROSSREFS
Cf. A223692.
Sequence in context: A008431 A250084 A280025 * A268625 A121344 A232819
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 25 2013
STATUS
approved