login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223526
Triangle S(n,k) by rows: coefficients of 3^(n/2)*(x^(2/3)*d/dx)^n when n=0,2,4,6,...
0
1, 1, 3, 4, 24, 9, 28, 252, 189, 27, 280, 3360, 3780, 1080, 81, 3640, 54600, 81900, 35100, 5265, 243, 58240, 1048320, 1965600, 1123200, 252720, 23328, 729, 1106560, 23237760, 52284960, 37346400, 11203920, 1551312, 96957, 2187, 24344320, 584263680, 1533692160
OFFSET
1,3
LINKS
FORMULA
T(n,0) = A007559(n) and T(n,n) = A000244(n) for all n>=0
EXAMPLE
Triangle begins:
1;
1, 3;
4, 24, 9;
28, 252, 189, 27;
280, 3360, 3780, 1080, 81;
3640, 54600, 81900, 35100, 5265, 243;
58240, 1048320, 1965600, 1123200, 252720, 23328, 729;
1106560, 23237760, 52284960, 37346400, 11203920, 1551312, 96957, 2187;
24344320, 584263680, 1533692160, 1314593280, 492972480, 91010304, 8532216, 384912, 6561;
MAPLE
a[0]:= f(x):
for i from 1 to 20 do
a[i] := simplify(3^((i+1)mod 2)*x^(((i+1)mod 2+1)/3)*(diff(a[i-1], x$1 )));
end do:
for j from 1 to 10 do
b[j]:=a[2j];
end do;
CROSSREFS
Even row of A223169.
Sequence in context: A041861 A042377 A276815 * A032831 A047180 A051394
KEYWORD
nonn,tabl
AUTHOR
Udita Katugampola, Mar 18 2013
STATUS
approved