login
A223525
Triangle S(n,k) by rows: coefficients of 3^((n-1)/2)*(x^(1/3)*d/dx)^n when n=1,3,5,...
0
1, 4, 3, 4, 24, 9, 28, 252, 189, 27, 280, 3360, 3780, 1080, 81, 3640, 54600, 81900, 35100, 5265, 243, 1106560, 4979520, 5335200, 2134080, 369360, 27702, 729, 24344320, 127807680, 164324160, 82162080, 18960480, 2133054, 112266, 2187, 608608000
OFFSET
1,2
EXAMPLE
Triangle begins:
1;
4, 3;
4, 24, 9;,
28, 252, 189, 27;
280, 3360, 3780, 1080, 81;
3640, 54600, 81900, 35100, 5265, 243;
1106560, 4979520, 5335200, 2134080, 369360, 27702, 729;
24344320, 127807680, 164324160, 82162080, 18960480, 2133054, 112266, 2187;
MAPLE
a[0]:= f(x):
for i from 1 to 20 do
a[i] := simplify(3^((i+1)mod 2)*x^(((i+1)mod 2+1)/3)*(diff(a[i-1], x$1 )));
end do:
for j from 1 to 10 do
b[j]:=a[2j-1];
end do;
CROSSREFS
Odd rows of A223169.
Sequence in context: A074296 A085961 A175325 * A205446 A343919 A152191
KEYWORD
nonn,tabl
AUTHOR
Udita Katugampola, Mar 18 2013
STATUS
approved