login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222731
Total sum of parts of multiplicity 3 in all partitions of n.
2
1, 0, 1, 3, 4, 4, 11, 13, 21, 30, 44, 59, 92, 115, 165, 225, 305, 394, 546, 700, 931, 1204, 1572, 2005, 2613, 3290, 4218, 5328, 6745, 8423, 10630, 13193, 16475, 20386, 25269, 31072, 38346, 46882, 57478, 70066, 85415, 103582, 125794, 151916, 183576, 220962
OFFSET
3,4
LINKS
FORMULA
G.f.: (x^3/(1-x^3)^2-x^4/(1-x^4)^2)/Product_{i>=1}(1-x^i).
a(n) ~ 7 * sqrt(3) * exp(Pi*sqrt(2*n/3)) / (288 * Pi^2). - Vaclav Kotesovec, May 29 2018
MAPLE
b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
add((l->`if`(m=3, l+[0, l[1]*p], l))(b(n-p*m, p-1)), m=0..n/p)))
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=3..50);
MATHEMATICA
b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n-p*m, p-1], Array[0&, p*m]]], {m, 0, n/p}]]]; a[n_] := b[n, n][[5]]; Table[a[n], {n, 3, 50}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)
CROSSREFS
Column k=3 of A222730.
Sequence in context: A368163 A202816 A089411 * A025508 A023189 A067137
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 03 2013
STATUS
approved