login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222732
Total sum of parts of multiplicity 4 in all partitions of n.
2
1, 0, 1, 1, 4, 4, 6, 8, 16, 19, 30, 36, 59, 73, 106, 135, 191, 242, 331, 420, 569, 712, 941, 1183, 1546, 1931, 2476, 3087, 3933, 4872, 6137, 7568, 9471, 11629, 14427, 17647, 21758, 26499, 32470, 39393, 48030, 58028, 70385, 84749, 102348, 122794, 147633, 176554
OFFSET
4,5
LINKS
FORMULA
G.f.: (x^4/(1-x^4)^2-x^5/(1-x^5)^2)/Product_{i>=1}(1-x^i).
a(n) ~ 9 * sqrt(3) * exp(Pi*sqrt(2*n/3)) / (800 * Pi^2). - Vaclav Kotesovec, May 29 2018
MAPLE
b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
add((l->`if`(m=4, l+[0, l[1]*p], l))(b(n-p*m, p-1)), m=0..n/p)))
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=4..55);
MATHEMATICA
b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n-p*m, p-1], Array[0&, p*m]]], {m, 0, n/p}]]]; a[n_] := b[n, n][[6]]; Table[a[n], {n, 4, 55}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)
CROSSREFS
Column k=4 of A222730.
Sequence in context: A175216 A053639 A100090 * A363703 A074161 A201401
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 03 2013
STATUS
approved