login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222733
Total sum of parts of multiplicity 5 in all partitions of n.
2
1, 0, 1, 1, 2, 4, 6, 6, 11, 14, 23, 29, 43, 52, 76, 100, 135, 174, 235, 294, 397, 500, 651, 821, 1060, 1324, 1692, 2107, 2658, 3297, 4139, 5089, 6339, 7778, 9604, 11746, 14425, 17533, 21427, 25960, 31548, 38080, 46070, 55375, 66718, 79957, 95906, 114555
OFFSET
5,5
LINKS
FORMULA
G.f.: (x^5/(1-x^5)^2-x^6/(1-x^6)^2)/Product_{i>=1}(1-x^i).
a(n) ~ 11 * sqrt(3) * exp(Pi*sqrt(2*n/3)) / (1800 * Pi^2). - Vaclav Kotesovec, May 29 2018
MAPLE
b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
add((l->`if`(m=5, l+[0, l[1]*p], l))(b(n-p*m, p-1)), m=0..n/p)))
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=5..55);
MATHEMATICA
b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n-p*m, p-1], Array[0&, p*m]]], {m, 0, n/p}]]]; a[n_] := b[n, n][[7]]; Table[a[n], {n, 5, 55}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)
CROSSREFS
Column k=5 of A222730.
Sequence in context: A066820 A309796 A359671 * A364828 A141677 A087459
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 03 2013
STATUS
approved