Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 May 29 2018 09:20:24
%S 1,0,1,3,4,4,11,13,21,30,44,59,92,115,165,225,305,394,546,700,931,
%T 1204,1572,2005,2613,3290,4218,5328,6745,8423,10630,13193,16475,20386,
%U 25269,31072,38346,46882,57478,70066,85415,103582,125794,151916,183576,220962
%N Total sum of parts of multiplicity 3 in all partitions of n.
%H Alois P. Heinz, <a href="/A222731/b222731.txt">Table of n, a(n) for n = 3..1000</a>
%F G.f.: (x^3/(1-x^3)^2-x^4/(1-x^4)^2)/Product_{i>=1}(1-x^i).
%F a(n) ~ 7 * sqrt(3) * exp(Pi*sqrt(2*n/3)) / (288 * Pi^2). - _Vaclav Kotesovec_, May 29 2018
%p b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
%p add((l->`if`(m=3, l+[0, l[1]*p], l))(b(n-p*m, p-1)), m=0..n/p)))
%p end:
%p a:= n-> b(n, n)[2]:
%p seq(a(n), n=3..50);
%t b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n-p*m, p-1], Array[0&, p*m]]], {m, 0, n/p}]]]; a[n_] := b[n, n][[5]]; Table[a[n], {n, 3, 50}] (* _Jean-François Alcover_, Jan 24 2014, after _Alois P. Heinz_ *)
%Y Column k=3 of A222730.
%K nonn
%O 3,4
%A _Alois P. Heinz_, Mar 03 2013