login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222055
E.g.f.: exp( Sum_{n>=1} x^(2*n-1) / (n*(2*n-1)) ).
1
1, 1, 1, 2, 5, 19, 79, 454, 2673, 20789, 159101, 1568786, 14804701, 177333727, 1991552627, 28122135014, 366398602529, 5965436400009, 88463085201433, 1632635041751362, 27151272591960661, 560416797991873451, 10329130452139887191, 235856196146890193062
OFFSET
0,4
COMMENTS
Sum_{n>=0} a(n)/n! = 4.
The radius of convergence of the e.g.f. is |x| <= 1.
LINKS
FORMULA
E.g.f.: (1+x)^2 / (1-x^2)^(1-1/x).
a(n) ~ 15*(n-2)!/4 if n is even and a(n) ~ 17*(n-2)!/4 if n is odd. - Vaclav Kotesovec, Jun 02 2013
EXAMPLE
E.g.f.: A(x) = 1 + x + x^2/2! + 2*x^3/3! + 5*x^4/4! + 19*x^5/5! + 79*x^6/6! + 454*x^7/7! + 2673*x^8/8! + 20789*x^9/9! +...
where
log(A(x)) = x/(1*1) + x^3/(2*3) + x^5/(3*5) + x^7/(4*7) + x^9/(5*9) +...
MATHEMATICA
CoefficientList[Series[(1+x)^2/(1-x^2)^(1-1/x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 02 2013 *)
PROG
(PARI) {a(n)=n!*polcoeff(exp(sum(m=1, n, x^(2*m-1)/(m*(2*m-1)))+x*O(x^(2*n))), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=n!*polcoeff( (1+x)^2 / (1-x^2 +x^2*O(x^n))^(1-1/x), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A150027 A277969 A058131 * A228569 A204328 A377785
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 14 2013
STATUS
approved