login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277969
a(n) = Sum_{k=0..n} binomial(n-3,n-k)*Catalan(k).
1
1, -1, 2, 5, 19, 75, 305, 1270, 5390, 23236, 101480, 448085, 1997115, 8973255, 40602093, 184853055, 846206025, 3892585325, 17984308775, 83417287855, 388297304825, 1813341109825, 8493372326675, 39889629750600, 187812852106636
OFFSET
0,3
LINKS
FORMULA
G.f.: ((1-x)^3*(1-sqrt((5*x-1)/(x-1))))/(2*x).
a(n) ~ 8*5^(n-3/2) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Nov 07 2016
(5*n-10)*a(n)-(7+6*n)*a(n+1)+(n+3)*a(n+2)=0 for n >= 2. - Robert Israel, Nov 21 2016
a(n) = A055452(n+1) for n > 2. - Georg Fischer, Oct 23 2018
MAPLE
f:= gfun:-rectoproc({(5*n-10)*a(n)+(-7-6*n)*a(n+1)+(n+3)*a(n+2), a(0) = 1, a(1) = -1, a(2) = 2, a(3) = 5}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Nov 21 2016
MATHEMATICA
CoefficientList[Series[((1 - x)^3 (1 - Sqrt[(5 x - 1) / (x - 1)])) / (2 x), {x, 0, 25}], x] (* Vincenzo Librandi, Nov 07 2016 *)
PROG
(Maxima)
a(n):=sum((binomial(2*k, k)*binomial(n-3, n-k))/(k+1), k, 0, n);
(PARI) x='x+O('x^50); Vec(((1-x)^3*(1-sqrt((5*x-1)/(x-1))))/(2*x)) \\ G. C. Greubel, Apr 09 2017
CROSSREFS
Sequence in context: A255541 A150026 A150027 * A058131 A222055 A228569
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Nov 06 2016
STATUS
approved