Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Jun 04 2013 03:36:20
%S 1,1,1,2,5,19,79,454,2673,20789,159101,1568786,14804701,177333727,
%T 1991552627,28122135014,366398602529,5965436400009,88463085201433,
%U 1632635041751362,27151272591960661,560416797991873451,10329130452139887191,235856196146890193062
%N E.g.f.: exp( Sum_{n>=1} x^(2*n-1) / (n*(2*n-1)) ).
%C Sum_{n>=0} a(n)/n! = 4.
%C The radius of convergence of the e.g.f. is |x| <= 1.
%H Vincenzo Librandi, <a href="/A222055/b222055.txt">Table of n, a(n) for n = 0..200</a>
%F E.g.f.: (1+x)^2 / (1-x^2)^(1-1/x).
%F a(n) ~ 15*(n-2)!/4 if n is even and a(n) ~ 17*(n-2)!/4 if n is odd. - _Vaclav Kotesovec_, Jun 02 2013
%e E.g.f.: A(x) = 1 + x + x^2/2! + 2*x^3/3! + 5*x^4/4! + 19*x^5/5! + 79*x^6/6! + 454*x^7/7! + 2673*x^8/8! + 20789*x^9/9! +...
%e where
%e log(A(x)) = x/(1*1) + x^3/(2*3) + x^5/(3*5) + x^7/(4*7) + x^9/(5*9) +...
%t CoefficientList[Series[(1+x)^2/(1-x^2)^(1-1/x), {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Jun 02 2013 *)
%o (PARI) {a(n)=n!*polcoeff(exp(sum(m=1, n, x^(2*m-1)/(m*(2*m-1)))+x*O(x^(2*n))), n)}
%o for(n=0, 30, print1(a(n), ", "))
%o (PARI) {a(n)=n!*polcoeff( (1+x)^2 / (1-x^2 +x^2*O(x^n))^(1-1/x),n)}
%o for(n=0, 30, print1(a(n), ", "))
%K nonn
%O 0,4
%A _Paul D. Hanna_, Feb 14 2013