login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220853
Denominators of the fraction (30*n+7) * binomial(2*n,n)^2 * 2F1([1/2 - n/2, -n/2], [1], 64)/(-256)^n, where 2F1 is the hypergeometric function.
2
1, 64, 16384, 1048576, 1073741824, 68719476736, 17592186044416, 1125899906842624, 4611686018427387904, 295147905179352825856, 75557863725914323419136, 4835703278458516698824704, 4951760157141521099596496896, 316912650057057350374175801344
OFFSET
0,2
COMMENTS
From Alexander R. Povolotsky, Jan 25 2013: (Start)
Sum_{n>=0} A220852(n)/A220853(n) = 24/Pi.
In more direct way, Sum_{k>=0} ((30*k+7) * binomial(2k,k)^2 * (2F1([1/2 - k/2, -k/2], [1], 64))/(-256)^k) = 24/Pi.
Another version of this identity is: Sum_{k>=0} ((30*k+7) * binomial(2k,k)^2 * (Sum_{m=0..floor(k/2)} (binomial(k-m,m) * binomial(k,m) * 16^m))/(-256)^k) = 24/Pi. (end)
LINKS
Zhi-Wei Sun, List of conjectural series for powers of Pi and other constants, arXiv:1102.5649 [math.CA], 2011-2014; Conjecture I1 page 24.
Zhi-Wei Sun, On sums related to central binomial and trinomial coefficients, arXiv:1101.0600 [math.NT], 2011-2014.
FORMULA
Conjectures from Alexander R. Povolotsky, Feb 27 2013: (Start)
a(n) = (A061549(n))^2.
a(n) = 4^A120738(n).
a(n) = 4^(log_2(16^n/((n/2) + (1/2) + (Sum_{k=0..n} (-(-1)^(binomial(n,k)))/2)))). (End)
MAPLE
A220853 := proc(n)
hypergeom([1/2-n/2, -n/2], [1], 64) ;
simplify(%) ;
(30*n+7)*binomial(2*n, n)^2*%/(-256)^n ;
denom(%) ;
end proc: # R. J. Mathar, Jan 09 2013
MATHEMATICA
Denominator[Table[(30*n + 7)*Binomial[2*n, n]^2*Hypergeometric2F1[(1 - n)/2, -n/2, 1, 64]/(-256)^n, {n, 0, 50}]] (* G. C. Greubel, Feb 20 2017 *)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
EXTENSIONS
Wrong conjecture removed by R. J. Mathar, Jun 17 2016
STATUS
approved