login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators of the fraction (30*n+7) * binomial(2*n,n)^2 * 2F1([1/2 - n/2, -n/2], [1], 64)/(-256)^n, where 2F1 is the hypergeometric function.
2

%I #78 Jun 27 2021 11:50:43

%S 1,64,16384,1048576,1073741824,68719476736,17592186044416,

%T 1125899906842624,4611686018427387904,295147905179352825856,

%U 75557863725914323419136,4835703278458516698824704,4951760157141521099596496896,316912650057057350374175801344

%N Denominators of the fraction (30*n+7) * binomial(2*n,n)^2 * 2F1([1/2 - n/2, -n/2], [1], 64)/(-256)^n, where 2F1 is the hypergeometric function.

%C From _Alexander R. Povolotsky_, Jan 25 2013: (Start)

%C Sum_{n>=0} A220852(n)/A220853(n) = 24/Pi.

%C In more direct way, Sum_{k>=0} ((30*k+7) * binomial(2k,k)^2 * (2F1([1/2 - k/2, -k/2], [1], 64))/(-256)^k) = 24/Pi.

%C Another version of this identity is: Sum_{k>=0} ((30*k+7) * binomial(2k,k)^2 * (Sum_{m=0..floor(k/2)} (binomial(k-m,m) * binomial(k,m) * 16^m))/(-256)^k) = 24/Pi. (end)

%H G. C. Greubel, <a href="/A220853/b220853.txt">Table of n, a(n) for n = 0..415</a>

%H Zhi-Wei Sun, <a href="https://arxiv.org/abs/1102.5649">List of conjectural series for powers of Pi and other constants</a>, arXiv:1102.5649 [math.CA], 2011-2014; Conjecture I1 page 24.

%H Zhi-Wei Sun, <a href="https://arxiv.org/abs/1101.0600">On sums related to central binomial and trinomial coefficients</a>, arXiv:1101.0600 [math.NT], 2011-2014.

%F Conjectures from _Alexander R. Povolotsky_, Feb 27 2013: (Start)

%F a(n) = (A061549(n))^2.

%F a(n) = 4^A120738(n).

%F a(n) = 4^(log_2(16^n/((n/2) + (1/2) + (Sum_{k=0..n} (-(-1)^(binomial(n,k)))/2)))). (End)

%p A220853 := proc(n)

%p hypergeom([1/2-n/2,-n/2],[1], 64) ;

%p simplify(%) ;

%p (30*n+7)*binomial(2*n,n)^2*%/(-256)^n ;

%p denom(%) ;

%p end proc: # _R. J. Mathar_, Jan 09 2013

%t Denominator[Table[(30*n + 7)*Binomial[2*n, n]^2*Hypergeometric2F1[(1 - n)/2, -n/2, 1,64]/(-256)^n,{n,0,50}]] (* _G. C. Greubel_, Feb 20 2017 *)

%Y Cf. A061549, A220852, A132714, A120738.

%K nonn,frac

%O 0,2

%A _Alexander R. Povolotsky_, Dec 23 2012

%E Wrong conjecture removed by _R. J. Mathar_, Jun 17 2016