login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220852
Numerators of the fraction (30*n+7) * binomial(2*n,n)^2 * 2F1([1/2 - n/2, -n/2], [1], 64)/(-256)^n, where 2F1 is the hypergeometric function.
2
7, -37, 19899, -235225, 268989175, -4985687133, 1052143756587, -25075299330081, 71491170131441775, -1979286926244381325, 319756423353994489291, -9700423363591011143001, 5919065321069316557189503, -189993537046726536185033125
OFFSET
0,1
COMMENTS
The Gaussian hypergeometric function 2F1() is a polynomial in n because at least one of the "numerators" is a negative integer. 2F1( [(1-n)/2,-n/2], [1], 64) = A098441(n). - R. J. Mathar, Jan 09 2013
LINKS
Zhi-Wei Sun, List of conjectural series for powers of Pi and other constants, arXiv:1102.5649 [math.CA], 2011-2014; Conjecture I1 page 24.
Zhi-Wei Sun, On sums related to central binomial and trinomial coefficients, arXiv:1101.0600 [math.NT], 2011-2014.
FORMULA
Sum_{n>=0} a(n)/A220853(n) = 24/Pi.
More directly, Sum_{k>=0} (30*k+7) * binomial(2k,k)^2 * (Hypergeometric2F1[1/2 - k/2, -k/2, 1,64])/(-256)^k = 24/Pi.
Another version of this identity is Sum_{k>=0} (30*k+7) * binomial(2k,k)^2 * (Sum_{m=0..k/2} binomial(k-m,m) * binomial(k,m) * 16^m)/(-256)^k.
MAPLE
A220852 := proc(n)
hypergeom([1/2-n/2, -n/2], [1], 64) ;
simplify(%) ;
(30*n+7)*binomial(2*n, n)^2*%/(-256)^n ;
numer(%) ;
end proc: # R. J. Mathar, Jan 09 2013
MATHEMATICA
Numerator[Table[(30*n + 7)*Binomial[2*n, n]^2* Hypergeometric2F1[(1 - n)/2, -n/2, 1, 64]/(-256)^n, {n, 0, 50}]] (* G. C. Greubel, Feb 20 2017 *)
CROSSREFS
KEYWORD
sign,frac
AUTHOR
EXTENSIONS
R. J. Mathar's comment and data corrected by G. C. Greubel, Feb 20 2017
STATUS
approved