login
A220852
Numerators of the fraction (30*n+7) * binomial(2*n,n)^2 * 2F1([1/2 - n/2, -n/2], [1], 64)/(-256)^n, where 2F1 is the hypergeometric function.
2
7, -37, 19899, -235225, 268989175, -4985687133, 1052143756587, -25075299330081, 71491170131441775, -1979286926244381325, 319756423353994489291, -9700423363591011143001, 5919065321069316557189503, -189993537046726536185033125
OFFSET
0,1
COMMENTS
The Gaussian hypergeometric function 2F1() is a polynomial in n because at least one of the "numerators" is a negative integer. 2F1( [(1-n)/2,-n/2], [1], 64) = A098441(n). - R. J. Mathar, Jan 09 2013
LINKS
Zhi-Wei Sun, List of conjectural series for powers of Pi and other constants, arXiv:1102.5649 [math.CA], 2011-2014; Conjecture I1 page 24.
Zhi-Wei Sun, On sums related to central binomial and trinomial coefficients, arXiv:1101.0600 [math.NT], 2011-2014.
FORMULA
Sum_{n>=0} a(n)/A220853(n) = 24/Pi.
More directly, Sum_{k>=0} (30*k+7) * binomial(2k,k)^2 * (Hypergeometric2F1[1/2 - k/2, -k/2, 1,64])/(-256)^k = 24/Pi.
Another version of this identity is Sum_{k>=0} (30*k+7) * binomial(2k,k)^2 * (Sum_{m=0..k/2} binomial(k-m,m) * binomial(k,m) * 16^m)/(-256)^k.
MAPLE
A220852 := proc(n)
hypergeom([1/2-n/2, -n/2], [1], 64) ;
simplify(%) ;
(30*n+7)*binomial(2*n, n)^2*%/(-256)^n ;
numer(%) ;
end proc: # R. J. Mathar, Jan 09 2013
MATHEMATICA
Numerator[Table[(30*n + 7)*Binomial[2*n, n]^2* Hypergeometric2F1[(1 - n)/2, -n/2, 1, 64]/(-256)^n, {n, 0, 50}]] (* G. C. Greubel, Feb 20 2017 *)
CROSSREFS
KEYWORD
sign,frac
AUTHOR
EXTENSIONS
R. J. Mathar's comment and data corrected by G. C. Greubel, Feb 20 2017
STATUS
approved