OFFSET
1,3
COMMENTS
Numbers n such that 6*n^2 + 2*n + 1 is a square. - Joerg Arndt, Apr 14 2013
a(n+4) - a(n) is divisible by 40. (a(n+2) - a(n)) mod 10 = period 4: repeat 8, 6, 2, 4. See A000689. - Paul Curtz, Apr 15 2013
For this 5 consecutive terms recurrence,the main (or principal) sequence is: CRR(n)= 0, 0, 0, 0, 1, 1, 99, 99, 9702, 9702,... . - Paul Curtz, Apr 16 2013
Also numbers n such that the sum of the octagonal numbers N(n) and N(n+1) is equal to the sum of two consecutive triangular numbers. - Colin Barker, Dec 09 2014
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,98,-98,-1,1).
FORMULA
G.f.: x^2 * (1+27*x-9*x^2-3*x^3) / ( (1-x)*(1-10*x+x^2)*(1+10*x+x^2) ). - Giovanni Resta, Apr 14 2013, adapted by Vincenzo Librandi Aug 13 2014
a(n) = ((-(-1)^n+sqrt(6))*(5+2*sqrt(6))^(n-1)-((-1)^n+sqrt(6))*(5-2*sqrt(6))^(n-1)-2)/12. - Bruno Berselli, Apr 14 2013
a(n) = a(n-1) + 98*a(n-2) - 98*a(n-3) - a(n-4) + a(n-5).
MATHEMATICA
LinearRecurrence[{1, 98, -98, -1, 1}, {0, 1, 28, 117, 2760}, 30] (* Giovanni Resta, Apr 14 2013 *)
CoefficientList[Series[x (1 + 27 x - 9 x^2 - 3 x^3)/((1 - x) (1 - 10 x + x^2) (1 + 10 x + x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 13 2014 *)
PROG
(C)
#include <stdio.h>
typedef unsigned long long U64;
U64 rootPronic(U64 a) {
U64 sr = 1L<<31, s, b;
while (a < sr*(sr+1)) sr>>=1;
for (b = sr>>1; b; b>>=1) {
s = sr+b;
if (a >= s*(s+1)) sr = s;
}
return sr;
}
int main() {
U64 a, n, r, t;
for (n=0; n < 3L<<30; n++) {
a = n*(n+1)/2 + n*n;
t = rootPronic(a);
if (a == t*(t+1)) {
printf("%llu\n", n);
}
}
}
(PARI) concat([0], Vec( x * (1+27*x-9*x^2-3*x^3) / ( (1-x)*(1-10*x+x^2)*(1+10*x+x^2) ) + O(x^66) ) ) /* Joerg Arndt, Apr 14 2013 */
(Maxima) makelist(expand(((-(-1)^n+sqrt(6))*(5+2*sqrt(6))^(n-1)-((-1)^n+sqrt(6))*(5-2*sqrt(6))^(n-1)-2)/12), n, 1, 25); /* Bruno Berselli, Apr 14 2013 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alex Ratushnyak, Apr 13 2013
EXTENSIONS
a(11)-a(21) from Giovanni Resta, Apr 14 2013
STATUS
approved