login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A220753 Expansion of (1+4*x+5*x^2-x^3)/((1-x)*(1+x)*(1-2*x^2)). 0
1, 4, 8, 11, 22, 25, 50, 53, 106, 109, 218, 221, 442, 445, 890, 893, 1786, 1789, 3578, 3581, 7162, 7165, 14330, 14333, 28666, 28669, 57338, 57341, 114682, 114685, 229370, 229373, 458746, 458749, 917498, 917501, 1835002, 1835005, 3670010, 3670013 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..39.

Index entries for linear recurrences with constant coefficients, signature (0,3,0,-2).

FORMULA

G.f.: (1+4*x+5*x^2-x^3)/((1-x)*(1+x)*(1-2*x^2)).

a(2n) = 7*2^n - 6 = A048489(n) = A063757(2n) = A005009(n)-6.

a(2n+1) = 7*2^n - 3 = A048489(n) + 3 = A063757(2n+1) - 3*A000225(n) = A005009(n)-3.

a(n) = a(n-1)*2 if n even.

a(n) = a(n-1)+3 if n odd.

a(n) = 3*a(n-2) - 2*a(n-4) with a(0)=1, a(1)=4, a(2)=8, a(3)=11.

a(n) = 7*2^floor(n/2) - (3/2)*(3+(-1)^n).

a(n) = A047290(A083416(n+1)). [Bruno Berselli, Apr 13 2013]

MATHEMATICA

Table[7 2^Floor[n/2] - (3/2) (3 + (-1)^n), {n, 0, 40}] (* Bruno Berselli, Apr 13 2013 *)

LinearRecurrence[{0, 3, 0, -2}, {1, 4, 8, 11}, 40] (* T. D. Noe, Apr 17 2013 *)

PROG

(MAGMA) m:=41; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+4*x+5*x^2-x^3)/((1-x)*(1+x)*(1-2*x^2)))); // Bruno Berselli, Apr 13 2013

CROSSREFS

Cf. A005009, A048489, A063757.

Sequence in context: A171070 A214970 A233188 * A166550 A219747 A032819

Adjacent sequences:  A220750 A220751 A220752 * A220754 A220755 A220756

KEYWORD

nonn,easy

AUTHOR

Philippe Deléham, Apr 13 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 7 16:09 EDT 2020. Contains 335496 sequences. (Running on oeis4.)