login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220700
a(0)=0, a(1)=0; for n>1, a(n) = a(n-1) + (n+3)*a(n-2) + 1
2
0, 0, 1, 2, 10, 27, 118, 389, 1688, 6357, 28302, 117301, 541832, 2418649, 11629794, 55165477, 276131564, 1379441105, 7178203950, 37525908261, 202624599112, 1103246397377, 6168861375178, 34853267706981, 201412524836788, 1177304020632257, 7018267240899110
OFFSET
0,4
LINKS
FORMULA
a(0)=a(1)=0, a(2)=1, a(n) = 2*a(n-1)+(n+2)*a(n-2)-(n+2)*a(n-3).
E.g.f.: 1/8*exp(-(x^2/2))*(exp(x^2/2)*(3*sqrt(2*Pi)*erf(1/sqrt(2))*exp(1/2*(x+1)^2)*(x*(x+2)*(x*(x+2)+8)+10)-6*(x+1)*(x*(x+2)+6)-6*exp(1/2*x*(x+2))*(x*(x+2)*(x*(x+2)+8)+10)+8*exp(x)*(x*(x*(x+4)+11)+12))+sqrt(2*Pi)*exp(x^2+x)*(x*(x+2)*(x*(x+2)+8)+10)*(4*erf(x/sqrt(2))-3*sqrt(exp(1))*erf((x+1)/sqrt(2)))). - Vaclav Kotesovec, Dec 27 2012
a(n) ~ (1/2*sqrt(Pi)-3/(4*sqrt(2))+3/8*sqrt(Pi)*exp(1/2)*(erf(1/sqrt(2))-1)) * n^(n/2+2)*exp(sqrt(n)-n/2-1/4) * (1+55/(24*sqrt(n))). - Vaclav Kotesovec, Dec 27 2012
MATHEMATICA
RecurrenceTable[{a[0] == 0, a[1] == 0, a[n] == a[n-1] + (n+3) a[n-2] + 1}, a, {n, 0, 40}] (* corrected by Georg Fischer, Dec 05 2019 *)
FullSimplify[CoefficientList[Series[1/8*E^(-(x^2/2))*(E^(x^2/2)*(3*Sqrt[2*Pi]*Erf[1/Sqrt[2]]*E^(1/2*(x+1)^2)*(x*(x+2)*(x*(x+2)+8)+10)-6*(x+1)*(x*(x+2)+6)-6*E^(1/2*x*(x+2))*(x*(x+2)*(x*(x+2)+8)+10)+8*E^x*(x*(x*(x+4)+11)+12))+Sqrt[2*Pi]*E^(x^2+x)*(x*(x+2)*(x*(x+2)+8)+10)*(4*Erf[x/Sqrt[2]]-3*Sqrt[E]*Erf[(x+1)/Sqrt[2]])), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Dec 27 2012 *)
nxt[{n_, a_, b_}]:={n+1, b, b+a(n+4)+1}; NestList[nxt, {1, 0, 0}, 30][[All, 2]] (* Harvey P. Dale, Mar 01 2020 *)
PROG
(Magma) [n le 2 select 0 else Self(n-1)+(n+2)*Self(n-2) + 1: n in [1..30]];
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Dec 25 2012
STATUS
approved