login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213720
a(0)=0, a(1)=0; for n>1, a(n) = a(n-1) + (n+2)*a(n-2) + 1.
6
0, 0, 1, 2, 9, 24, 97, 314, 1285, 4740, 20161, 81782, 364037, 1590768, 7415361, 34458418, 167934917, 822644860, 4181343201, 21456885262, 113446435685, 606954796712, 3329669253153, 18503539170954, 105074939752933, 604670497368692, 3546768810450817, 21082213234142886
OFFSET
0,4
LINKS
FORMULA
a(n) = 2*a(n-1)+(n+1)*a(n-2)-(n+1)*a(n-3) with a(0)=a(1)=0, a(2)=1. - Vincenzo Librandi, Dec 24 2012
E.g.f.: 1/6*exp(-(x^2/2))*(exp(x^2/2)*(sqrt(2*Pi)*erf(1/sqrt(2))*exp(1/2*(x+1)^2)*(x+1)*(x*(x+2)+4)-2*(x*(x+2)+3)-6*exp(1/2*x*(x+2))*(x+1)*(x*(x+2)+4)+6*exp(x)*(x*(x+3)+5))+sqrt(2*Pi)*exp(x^2+x)*(x+1)*(x*(x+2)+4)*(3*erf(x/sqrt(2))-sqrt(exp(1))*erf((x+1)/sqrt(2)))). - Vaclav Kotesovec, Dec 27 2012
a(n) ~ (1/2*sqrt(Pi)-1/sqrt(2)+1/6*sqrt(Pi)*exp(1/2)*(erf(1/sqrt(2))-1)) * n^(n/2+3/2)*exp(sqrt(n)-n/2-1/4) * (1+43/(24*sqrt(n))). - Vaclav Kotesovec, Dec 27 2012
MATHEMATICA
RecurrenceTable[{a[1] == 0, a[2] == 0, a[n] == a[n - 1] + (n + 1) a[n - 2] + 1}, a, {n, 30}] (* Bruno Berselli, Dec 24 2012 *)
FullSimplify[CoefficientList[Series[1/6*E^(-(x^2/2))*(E^(x^2/2)*(Sqrt[2*Pi]*Erf[1/Sqrt[2]]*E^(1/2*(x+1)^2)*(x+1)*(x*(x+2)+4)-2*(x*(x+2)+3)-6*E^(1/2*x*(x+2))*(x+1)*(x*(x+2)+4)+6*E^x*(x*(x+3)+5))+Sqrt[2*Pi]*E^(x^2+x)*(x+1)*(x*(x+2)+4)*(3*Erf[x/Sqrt[2]]-Sqrt[E]*Erf[(x+1)/Sqrt[2]])), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Dec 27 2012 *)
nxt[{n_, a_, b_}]:={n+1, b, b+a(n+3)+1}; NestList[nxt, {1, 0, 0}, 30][[;; , 2]] (* Harvey P. Dale, Nov 23 2024 *)
PROG
(Magma) I:=[0, 0, 1, 2]; [n le 4 select I[n] else 2*Self(n-1)+n*Self(n-2)-n*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Dec 24 2012
CROSSREFS
Sequence in context: A363660 A027302 A374703 * A378070 A353822 A073981
KEYWORD
nonn,changed
AUTHOR
Olivier Gérard, Nov 02 2012
EXTENSIONS
More terms from Vincenzo Librandi, Dec 24 2012
Edited by Bruno Berselli, Dec 24 2012
STATUS
approved