login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027302 a(n) = Sum_{k=0..floor((n-1)/2)} T(n,k) * T(n,k+1), with T given by A008315. 2
1, 2, 9, 24, 95, 286, 1099, 3536, 13479, 45220, 172150, 594320, 2265003, 7983990, 30487175, 109174560, 417812417, 1514797020, 5810065898, 21275014800, 81775140083, 301892460012, 1162703549474, 4321730134624, 16675372590850, 62340424959176, 240949471232124 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
a(n) is the number of Dyck (n+2)-paths with UU spanning the midpoint. E.g., for n=2 the two Dyck 4-paths are UUDU.UDDD and UDUU.UDDD where dot marks the midpoint. - David Scambler, Feb 11 2011
Apparently also the number of returns to the left of or to the midpoint of all Dyck paths with semilength n+1. - David Scambler, Apr 30 2013
LINKS
Alon Regev, The central component of a triangulation, arXiv:1210.3349 [math.CO], 2012, see p. 6.
Alon Regev, The Central Component of a Triangulation, J. Int. Seq. 16 (2013) #13.4.1
MATHEMATICA
a[n_] := With[{C = CatalanNumber}, Sum[C[k]*C[n+1-k], {k, 1, (n+1)/2}]]; Array[a, 30] (* Jean-François Alcover, May 01 2017 *)
PROG
(Sage)
def C(n): return binomial(2*n, n)/(n+1) # Catalan numbers
def A027302(n): return add(C(k)*C(n+1-k) for k in (1..(n+1)/2))
[A027302(n) for n in (1..22)] # Peter Luschny, Jun 27 2013
CROSSREFS
Sequence in context: A200086 A143561 A363660 * A213720 A353822 A073981
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Sean A. Irvine, Oct 26 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 13:24 EST 2023. Contains 367679 sequences. (Running on oeis4.)