Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 08 2022 08:46:04
%S 0,0,1,2,10,27,118,389,1688,6357,28302,117301,541832,2418649,11629794,
%T 55165477,276131564,1379441105,7178203950,37525908261,202624599112,
%U 1103246397377,6168861375178,34853267706981,201412524836788,1177304020632257,7018267240899110
%N a(0)=0, a(1)=0; for n>1, a(n) = a(n-1) + (n+3)*a(n-2) + 1
%H Vincenzo Librandi, <a href="/A220700/b220700.txt">Table of n, a(n) for n = 0..800</a>
%F a(0)=a(1)=0, a(2)=1, a(n) = 2*a(n-1)+(n+2)*a(n-2)-(n+2)*a(n-3).
%F E.g.f.: 1/8*exp(-(x^2/2))*(exp(x^2/2)*(3*sqrt(2*Pi)*erf(1/sqrt(2))*exp(1/2*(x+1)^2)*(x*(x+2)*(x*(x+2)+8)+10)-6*(x+1)*(x*(x+2)+6)-6*exp(1/2*x*(x+2))*(x*(x+2)*(x*(x+2)+8)+10)+8*exp(x)*(x*(x*(x+4)+11)+12))+sqrt(2*Pi)*exp(x^2+x)*(x*(x+2)*(x*(x+2)+8)+10)*(4*erf(x/sqrt(2))-3*sqrt(exp(1))*erf((x+1)/sqrt(2)))). - _Vaclav Kotesovec_, Dec 27 2012
%F a(n) ~ (1/2*sqrt(Pi)-3/(4*sqrt(2))+3/8*sqrt(Pi)*exp(1/2)*(erf(1/sqrt(2))-1)) * n^(n/2+2)*exp(sqrt(n)-n/2-1/4) * (1+55/(24*sqrt(n))). - _Vaclav Kotesovec_, Dec 27 2012
%t RecurrenceTable[{a[0] == 0, a[1] == 0, a[n] == a[n-1] + (n+3) a[n-2] + 1}, a, {n, 0, 40}] (* corrected by _Georg Fischer_, Dec 05 2019 *)
%t FullSimplify[CoefficientList[Series[1/8*E^(-(x^2/2))*(E^(x^2/2)*(3*Sqrt[2*Pi]*Erf[1/Sqrt[2]]*E^(1/2*(x+1)^2)*(x*(x+2)*(x*(x+2)+8)+10)-6*(x+1)*(x*(x+2)+6)-6*E^(1/2*x*(x+2))*(x*(x+2)*(x*(x+2)+8)+10)+8*E^x*(x*(x*(x+4)+11)+12))+Sqrt[2*Pi]*E^(x^2+x)*(x*(x+2)*(x*(x+2)+8)+10)*(4*Erf[x/Sqrt[2]]-3*Sqrt[E]*Erf[(x+1)/Sqrt[2]])), {x, 0, 20}], x]* Range[0, 20]!] (* _Vaclav Kotesovec_, Dec 27 2012 *)
%t nxt[{n_,a_,b_}]:={n+1,b,b+a(n+4)+1}; NestList[nxt,{1,0,0},30][[All,2]] (* _Harvey P. Dale_, Mar 01 2020 *)
%o (Magma) [n le 2 select 0 else Self(n-1)+(n+2)*Self(n-2) + 1: n in [1..30]];
%Y Cf. A185108, A185109, A185308, A185309, A186738, A186739, A213720.
%K nonn,easy
%O 0,4
%A _Vincenzo Librandi_, Dec 25 2012