OFFSET
1,1
COMMENTS
The sequence contains the elements of A090801 which are == 3 (mod 9).
Conjecture: all the first differences 36, 72, 144, 72,... of the sequence are multiples of 36.
The conjecture is true, since elements of A090801 are 2 mod 4. - Charles R Greathouse IV, Nov 22 2012
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MATHEMATICA
listLength = 50; n0 = 10*listLength; Clear[f]; f[n_] := f[n] = Union[Reap[ For[k = 4, k <= n, k = k+2, b = Denominator[BernoulliB[k]]; If[Mod[b, 36] == 30, Sow[b]]]][[2, 1]]][[1 ;; listLength]]; f[n0]; f[n = 2 n0]; While[ Print["n = ", n]; f[n] != f[n/2], n = 2 n]; A219543 = f[n] (* Jean-François Alcover, Jan 11 2016 *)
PROG
(PARI) is(n)=if(n%36-30, 0, my(f=factor(n)); if(vecmax(f[, 2])>1, return(0)); fordiv(lcm(apply(k->k-1, f[, 1])), k, if(isprime(k+1) && n%(k+1), return(0))); 1) \\ Charles R Greathouse IV, Nov 26 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul Curtz, Nov 22 2012
STATUS
approved