OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..2401
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 91
FORMULA
O.g.f. satisfies A(x) = x + A(x^2/(1-x^2)).
MAPLE
a:= proc(n) option remember; add(`if`(k=0, 1,
`if`(k::odd, a((k+1)/2)*binomial(n-1, k), 0)), k=0..n-1)
end:
seq(a(n), n=0..35); # Alois P. Heinz, Feb 26 2022
MATHEMATICA
nn=60; f[x_]:=Sum[a[n]x^n, {n, 0, nn}]; sol=SolveAlways[0 == Series[f[x]-x-f[x^2/(1-x^2)], {x, 0, nn}], x]; a[0]=0; Table[a[n], {n, 0, nn, 2}]/.sol
CROSSREFS
KEYWORD
nonn,eigen
AUTHOR
Geoffrey Critzer, Nov 15 2012
STATUS
approved