OFFSET
0,3
COMMENTS
Compare to the o.g.f. of A217913:
Sum_{n>=0} (n^3)^n*exp(-n^3*x)*x^n/n! = Sum_{n>=0} Stirling2(3*n,n)*x^n.
FORMULA
O.g.f. satisfies: A(x) = Sum_{n>=0} Stirling2(3*n,n) * x^n * A(x)^n.
EXAMPLE
O.g.f.: A(x) = 1 + x + 32*x^2 + 3119*x^3 + 625710*x^4 + 214333471*x^5 +...
where
A(x) = 1 + x*A(x)*exp(-x*A(x)) + 2^6*x^2*A(x)^2/2!*exp(-8*x*A(x)) + 3^9*x^3*A(x)^3/3!*exp(-27*x*A(x)) + 4^12*x^4*A(x)^4/4!*exp(-64*x*A(x)) + 5^15*x^5*A(x)^5/5!*exp(-125*x*A(x)) +...
simplifies to a power series in x with integer coefficients.
G.f. A(x) satisfies A(x) = G(x*A(x)) where G(x) = A(x/G(x)) begins:
G(x) = 1 + x + 31*x^2 + 3025*x^3 + 611501*x^4 + 210766920*x^5 + 110687251039*x^6 +...+ Stirling2(3*n,n)*x^n +...
PROG
(PARI) {a(n)=local(A=1); for(i=1, n, A=sum(m=0, n, (m^3*x*A)^m/m!*exp(-m^3*x*A+x*O(x^n)))); polcoeff(A, n)}
for(n=0, 21, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 15 2012
STATUS
approved