OFFSET
0,3
COMMENTS
Compare to the dual g.f. of A218576:
exp( Sum_{n>=1} x^n/n * Product_{k>=1} (1 + x^(n*k)*(1 + x^k)^n) ).
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..1000
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 20*x^5 + 45*x^6 + 97*x^7 +...
where
log(A(x)) = x/1*((1+x*(1+x))*(1+x^2*(1+x)^2)*(1+x^3*(1+x)^3)*...) +
x^2/2*((1+x^2*(1+x^2))*(1+x^4*(1+x^2)^2)*(1+x^6*(1+x^2)^3)*...) +
x^3/3*((1+x^3*(1+x^3))*(1+x^6*(1+x^3)^2)*(1+x^9*(1+x^3)^3)*...) +
x^4/4*((1+x^4*(1+x^4))*(1+x^8*(1+x^4)^2)*(1+x^12*(1+x^4)^3)*...) +...
Explicitly,
log(A(x)) = x + 3*x^2/2 + 7*x^3/3 + 19*x^4/4 + 46*x^5/5 + 111*x^6/6 + 232*x^7/7 + 555*x^8/8 + 1204*x^9/9 + 2608*x^10/10 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*prod(k=1, n\m, (1+x^(m*k)*(1+x^m+x*O(x^n))^k )))), n)}
for(n=0, 50, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 15 2012
STATUS
approved