%I #11 Feb 26 2022 13:46:39
%S 0,1,2,3,6,13,29,65,147,337,785,1857,4452,10789,26365,64833,160167,
%T 397025,986593,2456193,6123726,15286021,38198573,95555937,239294222,
%U 599914489,1505750425,3783967201,9521244242,23988787485,60520345765,152889244033,386752047956
%N Number of rooted unlabeled ordered (plane) trees with 2n leaves such that i) every internal node has an even number of children and ii) every path from the root to a leaf is the same length.
%H Alois P. Heinz, <a href="/A219226/b219226.txt">Table of n, a(n) for n = 0..2401</a>
%H P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; see page 91
%F O.g.f. satisfies A(x) = x + A(x^2/(1-x^2)).
%p a:= proc(n) option remember; add(`if`(k=0, 1,
%p `if`(k::odd, a((k+1)/2)*binomial(n-1, k), 0)), k=0..n-1)
%p end:
%p seq(a(n), n=0..35); # _Alois P. Heinz_, Feb 26 2022
%t nn=60;f[x_]:=Sum[a[n]x^n,{n,0,nn}];sol=SolveAlways[0 == Series[f[x]-x-f[x^2/(1-x^2)],{x,0,nn}],x];a[0]=0;Table[a[n],{n,0,nn,2}]/.sol
%Y Cf. A014535, A027826.
%K nonn,eigen
%O 0,3
%A _Geoffrey Critzer_, Nov 15 2012