login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218849
Primes p such that 4*p is greater than the greatest prime factor of p^4 -1 and p^4 + 1.
0
2383, 3373, 10181, 11483, 18979, 30727, 35677, 35837, 37783, 41879, 41893, 47041, 48131, 49253, 53309, 55541, 62497, 67103, 84229, 88607, 91499, 95869, 97397, 99523, 104161, 105557, 107747, 113149, 118493, 118927, 137339, 145501, 146291, 148153, 149713, 165701
OFFSET
1,1
EXAMPLE
2383^4 - 1 = 2^6*3*5*149*157*397*3617, 2383^4 + 1 = 2*809*857*2833*8209 and 4*2383 > 8209 and 4*2383 > 3617.
MATHEMATICA
Select[Prime[Range[PrimePi[200000]]], 4 # > FactorInteger[#^4 - 1][[-1, 1]] && 4 # > FactorInteger[#^4 + 1][[-1, 1]] &] (* T. D. Noe, Nov 07 2012 *)
PROG
(PARI) forprime(h=3, 200001, for(n=4, 4, a=h^n; b=a-1; c=a+1; d=vecmax(factor(b)[, 1]~); e=vecmax(factor(c)[, 1]~); g=h*n; if(g>d && g>e, print1(h, ", "))))
CROSSREFS
Sequence in context: A107530 A020394 A251649 * A254562 A186867 A210078
KEYWORD
nonn
AUTHOR
Robin Garcia, Nov 07 2012
STATUS
approved