The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A218851 a(n) = 2*floor((n + sin(n)/(2*sin(1/2))) * log(n)) + 1. 1
 1, 5, 7, 9, 13, 21, 29, 37, 41, 43, 47, 57, 69, 79, 85, 87, 91, 99, 113, 125, 133, 135, 139, 147, 161, 175, 185, 189, 191, 197, 211, 225, 239, 243, 245, 251, 263, 279, 293, 301, 303, 307, 317, 333, 349, 359, 363, 365, 373, 389, 407, 419, 425, 427, 433, 447 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This sequence of odd integers mimics the prime numbers and more specifically it is conjectured a(n) satisfies an analog of the k-tuple conjecture (see link) with similar heuristic asymptotic formulas. LINKS Benoit Cloitre, A k-tuple conjecture for an explicit sequence MATHEMATICA Table[2*Floor[(n + Sin[n]/(2*Sin[1/2]))*Log[n]] + 1, {n, 60}] (* T. D. Noe, Nov 08 2012 *) PROG (PARI) a(n)=2*floor((n+sin(n)/2/sin(1/2))*log(n))+1 CROSSREFS Sequence in context: A039504 A097280 A155732 * A211184 A327307 A029606 Adjacent sequences:  A218848 A218849 A218850 * A218852 A218853 A218854 KEYWORD nonn AUTHOR Benoit Cloitre, Nov 07 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 10 18:53 EDT 2021. Contains 343779 sequences. (Running on oeis4.)