login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254562
Number of (n+2)X(2+2) 0..1 arrays with every 3X3 subblock sum of the four sums of the central row, central column, diagonal and antidiagonal nondecreasing horizontally and vertically
1
2384, 10870, 54212, 183210, 536906, 1612832, 4205934, 10525070, 25843648, 60108505, 134388526, 293848960, 621358505, 1276346055, 2565832463, 5035276195, 9660711323, 18188928868, 33596838971, 60932752216, 108732023416
OFFSET
1,1
COMMENTS
Column 2 of A254568
FORMULA
Empirical: a(n) = 7*a(n-1) -20*a(n-2) +41*a(n-3) -105*a(n-4) +246*a(n-5) -414*a(n-6) +708*a(n-7) -1371*a(n-8) +2105*a(n-9) -2834*a(n-10) +4537*a(n-11) -6526*a(n-12) +7449*a(n-13) -9750*a(n-14) +13221*a(n-15) -13299*a(n-16) +13728*a(n-17) -17446*a(n-18) +15730*a(n-19) -11297*a(n-20) +13013*a(n-21) -10296*a(n-22) +1287*a(n-23) -1287*a(n-25) +10296*a(n-26) -13013*a(n-27) +11297*a(n-28) -15730*a(n-29) +17446*a(n-30) -13728*a(n-31) +13299*a(n-32) -13221*a(n-33) +9750*a(n-34) -7449*a(n-35) +6526*a(n-36) -4537*a(n-37) +2834*a(n-38) -2105*a(n-39) +1371*a(n-40) -708*a(n-41) +414*a(n-42) -246*a(n-43) +105*a(n-44) -41*a(n-45) +20*a(n-46) -7*a(n-47) +a(n-48) for n>56
polynomial of degree 20 plus a quasipolynomial of degree 12 with period 6 for n>8 (see link above)
EXAMPLE
Some solutions for n=4
..0..0..1..1....0..1..0..1....0..1..0..1....0..0..0..0....0..0..0..0
..1..0..0..1....0..0..0..1....0..0..1..0....0..0..0..1....0..0..0..1
..0..0..1..0....0..0..0..0....1..0..1..1....1..0..0..1....0..0..0..1
..0..1..1..1....0..1..1..1....1..0..1..1....0..0..0..0....1..1..1..0
..1..1..1..1....0..1..1..0....0..0..1..0....0..1..1..1....0..0..1..1
..0..0..1..1....1..0..0..0....1..1..0..1....0..0..1..0....1..1..1..1
CROSSREFS
Sequence in context: A020394 A251649 A218849 * A186867 A210078 A172653
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 01 2015
STATUS
approved