login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that 4*p is greater than the greatest prime factor of p^4 -1 and p^4 + 1.
0

%I #7 Jan 21 2016 14:22:10

%S 2383,3373,10181,11483,18979,30727,35677,35837,37783,41879,41893,

%T 47041,48131,49253,53309,55541,62497,67103,84229,88607,91499,95869,

%U 97397,99523,104161,105557,107747,113149,118493,118927,137339,145501,146291,148153,149713,165701

%N Primes p such that 4*p is greater than the greatest prime factor of p^4 -1 and p^4 + 1.

%e 2383^4 - 1 = 2^6*3*5*149*157*397*3617, 2383^4 + 1 = 2*809*857*2833*8209 and 4*2383 > 8209 and 4*2383 > 3617.

%t Select[Prime[Range[PrimePi[200000]]], 4 # > FactorInteger[#^4 - 1][[-1, 1]] && 4 # > FactorInteger[#^4 + 1][[-1, 1]] &] (* _T. D. Noe_, Nov 07 2012 *)

%o (PARI) forprime(h=3,200001,for(n=4,4,a=h^n; b=a-1; c=a+1; d=vecmax(factor(b)[,1]~); e=vecmax(factor(c)[,1]~); g=h*n; if(g>d && g>e,print1(h,", "))))

%K nonn

%O 1,1

%A _Robin Garcia_, Nov 07 2012