login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218572
Number of partitions p of n such that max(p)-min(p) = 9.
3
1, 1, 3, 3, 7, 8, 14, 18, 28, 35, 53, 66, 92, 117, 157, 196, 259, 319, 411, 507, 638, 777, 970, 1171, 1438, 1728, 2098, 2501, 3012, 3563, 4251, 5008, 5923, 6931, 8152, 9486, 11078, 12835, 14900, 17177, 19844, 22768, 26169, 29916, 34219, 38954, 44387, 50338
OFFSET
11,3
LINKS
G. E. Andrews, M. Beck and N. Robbins, Partitions with fixed differences between largest and smallest parts, arXiv:1406.3374 [math.NT], 2014.
FORMULA
G.f.: Sum_{k>0} x^(2*k+9)/Product_{j=0..9} (1-x^(k+j)).
a(n) = A097364(n,9) = A116685(n,9) = A194621(n,9) - A194621(n,8) = A218511(n) - A218510(n).
MATHEMATICA
terms = 48; offset = 11; max = terms + offset; s[k0_ /; k0 > 0] := Sum[x^(2*k + k0)/Product[ (1 - x^(k + j)), {j, 0, k0}], {k, 1, Ceiling[max/2]}] + O[x]^max // CoefficientList[#, x] &; Drop[s[9], offset] (* Jean-François Alcover, Sep 11 2017, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A218569 A218570 A218571 * A218573 A117989 A241642
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 02 2012
STATUS
approved