login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions p of n such that max(p)-min(p) = 9.
3

%I #14 Sep 11 2017 02:36:20

%S 1,1,3,3,7,8,14,18,28,35,53,66,92,117,157,196,259,319,411,507,638,777,

%T 970,1171,1438,1728,2098,2501,3012,3563,4251,5008,5923,6931,8152,9486,

%U 11078,12835,14900,17177,19844,22768,26169,29916,34219,38954,44387,50338

%N Number of partitions p of n such that max(p)-min(p) = 9.

%H Alois P. Heinz, <a href="/A218572/b218572.txt">Table of n, a(n) for n = 11..1000</a>

%H G. E. Andrews, M. Beck and N. Robbins, <a href="https://arxiv.org/abs/1406.3374">Partitions with fixed differences between largest and smallest parts</a>, arXiv:1406.3374 [math.NT], 2014.

%F G.f.: Sum_{k>0} x^(2*k+9)/Product_{j=0..9} (1-x^(k+j)).

%F a(n) = A097364(n,9) = A116685(n,9) = A194621(n,9) - A194621(n,8) = A218511(n) - A218510(n).

%t terms = 48; offset = 11; max = terms + offset; s[k0_ /; k0 > 0] := Sum[x^(2*k + k0)/Product[ (1 - x^(k + j)), {j, 0, k0}], {k, 1, Ceiling[max/2]}] + O[x]^max // CoefficientList[#, x] &; Drop[s[9], offset] (* _Jean-François Alcover_, Sep 11 2017, after _Alois P. Heinz_ *)

%K nonn

%O 11,3

%A _Alois P. Heinz_, Nov 02 2012