login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218331
Even, nonzero decagonal pyramidal numbers.
1
38, 90, 476, 708, 1826, 2366, 4600, 5576, 9310, 10850, 16468, 18700, 26586, 29638, 40176, 44176, 57750, 62826, 79820, 86100, 106898, 114510, 139496, 148568, 178126, 188786, 223300, 235676, 275530, 289750, 335328, 351520, 403206, 421498, 479676, 500196
OFFSET
1,1
FORMULA
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) + 512.
a(n) = (16*n-4*(-1)^n-1)*(4*n-(-1)^n+3)*(4*n-(-1)^n+1)/24.
G. f. 2*x*(19+26*x+136*x^2+38*x^3+37*x^4)/((1-x)^4*(1+x)^3).
EXAMPLE
The sequence of nonzero decagonal pyramidal numbers begins 1, 11, 38, 90, 175, 301, 476, 708, 1005, 1375,... As the third even term is 476, then a(3) = 476.
MATHEMATICA
LinearRecurrence[{1, 3, -3, -3, 3, 1, -1}, {38, 90, 476, 708, 1826, 2366, 4600}, 36]
CROSSREFS
Sequence in context: A137028 A235087 A235080 * A124141 A093649 A020167
KEYWORD
nonn,easy
AUTHOR
Ant King, Oct 29 2012
STATUS
approved