login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218334
Triangular array read by rows. T(n,k) is the number of simple labeled graphs on n nodes with no isolated nodes and exactly k components. n >= 2, 1 <= k < n/2.
1
1, 4, 38, 3, 728, 40, 26704, 730, 15, 1866256, 20608, 420, 251548592, 961324, 12460, 105, 66296291072, 79643424, 484624, 5040, 34496488594816, 12495365424, 27712860, 220500, 945, 35641657548953344, 3844702446464, 2619965040, 11297440, 69300, 73354596206766622208, 2341246104706784, 458476648344, 775542460, 4192650, 10395
OFFSET
2,2
COMMENTS
Row sums are A006129.
For even n, T(n,n/2) = A001147(n) = (2n-1)!!.
Column k = 1 is A001187.
LINKS
FORMULA
E.g.f.: exp( y*log(A(x)) ) where A(x) is the e.g.f. for A006129.
EXAMPLE
1;
4;
38, 3;
728, 40;
26704, 730, 15;
1866256, 20608, 420;
251548592, 961324, 12460, 105;
66296291072, 79643424, 484624, 5040;
34496488594816, 12495365424, 27712860, 220500, 945;
MATHEMATICA
nn=12; a=Sum[2^Binomial[n, 2]x^n/n!, {n, 0, nn}]; b=a/Exp[x]; f[list_]:=Select[list, #>0&]; Map[f, Drop[Range[0, nn]!CoefficientList[Series[Exp[y Log[b]], {x, 0, nn}], {x, y}], 2]]//Flatten
CROSSREFS
Sequence in context: A027461 A144991 A073237 * A121672 A020205 A265437
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Oct 26 2012
STATUS
approved