OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
FORMULA
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 448.
a(n) = (2*n-1)*(4*n-3)*(28*n-25)/3.
G.f.: x*(1+151*x+271*x^2+25*x^3)/(1-x)^4.
EXAMPLE
The sequence of 9-gonal (nonagonal) pyramidal numbers A007584 begins 1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, .... As the third odd term is 885, then a(3) = 885.
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {1, 155, 885, 2639}, 33]
PROG
(PARI) a(n)=(2*n-1)*(4*n-3)*(28*n-25)/3 \\ Charles R Greathouse IV, Oct 18 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ant King, Oct 28 2012
STATUS
approved