login
A218329
Even 9-gonal (nonagonal) pyramidal numbers.
1
10, 34, 80, 266, 420, 624, 1210, 1606, 2080, 3290, 4040, 4896, 6954, 8170, 9520, 12650, 14444, 16400, 20826, 23310, 25984, 31930, 35216, 38720, 46410, 50610, 55056, 64714, 69940, 75440, 87290, 93654, 100320, 114586, 122200, 130144, 147050, 156026, 165360
OFFSET
1,1
FORMULA
a(n) = a(n-1) + 3*a(n-3) - 3*a(n-4) - 3*a(n-6) + 3*a(n-7) + a(n-9) - a(n-10).
a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9) + 448.
a(n) = phi(n)*(phi(n)+9)*(7*phi(n)-36)/4374, where phi(n) = 3 + 12*n - 3*cos(2*n*Pi/3) + sqrt(3)*sin(2*n*Pi/3).
G.f.: 2*x*(5+12*x+23*x^2+78*x^3+41*x^4+33*x^5+29*x^6+3*x^7)/((1-x)^4*(1+x+x^2)^3).
EXAMPLE
The sequence of 9-gonal (nonagonal) pyramidal numbers A007584 begins 1, 10, 34, 80, 155, 266, 420, 624, 885, 1210,.... As the third even term is 80, then a(3) = 80.
MATHEMATICA
LinearRecurrence[{1, 0, 3, -3, 0, -3, 3, 0, 1, -1}, {10, 34, 80, 266, 420, 624, 1210, 1606, 2080, 3290}, 39]
CROSSREFS
Sequence in context: A008527 A366415 A007584 * A009924 A297721 A019257
KEYWORD
nonn
AUTHOR
Ant King, Oct 28 2012
STATUS
approved