OFFSET
1,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 0, 3, -3, 0, -3, 3, 0, 1, -1).
FORMULA
a(n) = a(n-1) + 3*a(n-3) - 3*a(n-4) - 3*a(n-6) + 3*a(n-7) + a(n-9) - a(n-10).
a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9) + 448.
a(n) = phi(n)*(phi(n)+9)*(7*phi(n)-36)/4374, where phi(n) = 3 + 12*n - 3*cos(2*n*Pi/3) + sqrt(3)*sin(2*n*Pi/3).
G.f.: 2*x*(5+12*x+23*x^2+78*x^3+41*x^4+33*x^5+29*x^6+3*x^7)/((1-x)^4*(1+x+x^2)^3).
EXAMPLE
The sequence of 9-gonal (nonagonal) pyramidal numbers A007584 begins 1, 10, 34, 80, 155, 266, 420, 624, 885, 1210,.... As the third even term is 80, then a(3) = 80.
MATHEMATICA
LinearRecurrence[{1, 0, 3, -3, 0, -3, 3, 0, 1, -1}, {10, 34, 80, 266, 420, 624, 1210, 1606, 2080, 3290}, 39]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ant King, Oct 28 2012
STATUS
approved