OFFSET
0,2
COMMENTS
Also sequence found by reading the segment (1, 10) together with the line from 10, in the direction 10, 34, ..., in the square spiral whose vertices are the generalized hexagonal numbers A000217. - Omar E. Pol, Nov 02 2012
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.
M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908. [Annotated scanned copy]
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(0) = 1; a(n) = 8*n^2+2 for n>0.
From Gary W. Adamson, Dec 27 2007: (Start)
a(n) = (2n+1)^2 + (2n-1)^2 for n>0.
Binomial transform of [1, 9, 15, 1, -1, 1, -1, 1, ...]. (End)
From Colin Barker, Apr 13 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: (1+x)*(1+6*x+x^2)/(1-x)^3. (End)
From Bruce J. Nicholson, Jul 31 2019: (Start) Assume n>0.
a(n) = 2 * A053755(n).
E.g.f.: -1 + 2*exp(x)*(1 + 2*x)^2. - Stefano Spezia, Aug 02 2019
Sum_{n>=0} 1/a(n) = 3/4+1/8*Pi*coth(Pi/2) = 1.178172.... - R. J. Mathar, May 07 2024
MAPLE
1, seq(8*k^2+2, k=1..50);
MATHEMATICA
a[0]:= 1; a[n_]:= 8n^2 +2; Table[a[n], {n, 0, 50}] (* Alonso del Arte, Sep 06 2011 *)
LinearRecurrence[{3, -3, 1}, {1, 10, 34, 74}, 50] (* Harvey P. Dale, Feb 13 2022 *)
PROG
(PARI) vector(51, n, if(n==1, 1, 2*(1+(2*n-2)^2)) ) \\ G. C. Greubel, Nov 09 2019
(Magma) [1] cat [2*(1 + 4*n^2): n in [1..50]]; // G. C. Greubel, Nov 09 2019
(Sage) [1]+[2*(1+4*n^2) for n in (1..40)] # G. C. Greubel, Nov 09 2019
(GAP) Concatenation([1], List([1..40], n-> 2*(1+4*n^2) )); # G. C. Greubel, Nov 09 2019
CROSSREFS
Apart from leading term, same as A108100.
Cf. A206399.
Cf. A016754 (SE), A054554 (NE), A054569 (SW), A053755 (NW), A033951 (S), A054552 (E), A054556 (N), A054567 (W) (Ulam spiral spokes).
KEYWORD
nonn,easy
AUTHOR
STATUS
approved