login
A143859
Ulam's spiral (WNW spoke).
4
1, 18, 67, 148, 261, 406, 583, 792, 1033, 1306, 1611, 1948, 2317, 2718, 3151, 3616, 4113, 4642, 5203, 5796, 6421, 7078, 7767, 8488, 9241, 10026, 10843, 11692, 12573, 13486, 14431, 15408, 16417, 17458, 18531, 19636, 20773, 21942, 23143, 24376
OFFSET
1,2
COMMENTS
Also sequence found by reading the segment (1, 18) together with the line from 18, in the direction 18, 67, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 05 2012
FORMULA
a(n) = 16*n^2 - 31*n + 16. - R. J. Mathar, Sep 08 2008
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(1)=1, a(2)=18, a(3)=67. - Harvey P. Dale, Mar 24 2012
G.f.: x*(1 + 15*x + 16*x^2)/(1-x)^3. - Colin Barker, Aug 03 2012
E.g.f.: -16 + (16 - 15*x + 16*x^2)*exp(x). - G. C. Greubel, Nov 09 2019
MAPLE
seq( ((32*n-31)^2+63)/64, n=1..50); # G. C. Greubel, Nov 09 2019
MATHEMATICA
f[n_]:= 16n^2 -31n +16; Array[f, 40] (* Vladimir Joseph Stephan Orlovsky, Sep 03 2008 *)
LinearRecurrence[{3, -3, 1}, {1, 18, 67}, 40] (* Harvey P. Dale, Mar 24 2012 *)
CoefficientList[Series[(1+15x+16x^2)/(1-x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 08 2014 *)
PROG
(Magma) [16*n^2-31*n+16: n in [1..50]]; // Vincenzo Librandi, Nov 08 2014
(PARI) vector(50, n, 16*n^2-31*n+16) \\ Michel Marcus, Nov 08 2014
(Sage) [((32*n-31)^2+63)/64 for n in (1..50)] # G. C. Greubel, Nov 09 2019
(GAP) List([1..50], n-> ((32*n-31)^2+63)/64); # G. C. Greubel, Nov 09 2019
CROSSREFS
Sequence in context: A237616 A044156 A044537 * A063523 A045234 A158056
KEYWORD
nonn,easy
AUTHOR
STATUS
approved