login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A217685 Numerators of the continued fraction convergents of log_10((1+sqrt(5))/2). 5
0, 1, 1, 4, 5, 9, 14, 93, 386, 865, 1251, 13375, 14626, 71879, 3321060, 10035059, 13356119, 36747297, 50103416, 86850713, 136954129, 223804842, 808368655, 13157703322, 27123775299, 148776579817, 175900355116, 676477645165, 1528855645446, 3734188936057 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Lucas(Denominator of convergents) get increasingly closer to the values of 10^(Numerator of convergents).

For example,

Lucas(19) = 9349 ~ 10^4, error = 6.51%

Lucas(24) = 103682 ~ 10^5, error = 3.682%

Lucas(43) = 969323029 ~ 10^9, error = 3.068%

Lucas(67) = 100501350283429 ~ 10^14, error = 0.501%

In fact, for sufficiently large values of n, we will have that Lucas(n) ~ ((1+sqrt(5))/2)^n.

LINKS

Table of n, a(n) for n=0..29.

FORMULA

A217685(n) = A217684(n)*A217685(n-1) + A217685(n-2).

PROG

(PARI) default(realprecision, 21000); for(i=1, 100, print(contfracpnqn(contfrac(log((1+sqrt(5))/2)/log(10), 0, i))[1, 1]))

CROSSREFS

Cf. A217684 (continued fraction expansion of log_10((1+sqrt(5))/2)).

Cf. A217686 (denominators of the continued fraction convergents of log_10((1+sqrt(5))/2)).

Sequence in context: A121052 A041823 A042489 * A251632 A049860 A010382

Adjacent sequences:  A217682 A217683 A217684 * A217686 A217687 A217688

KEYWORD

nonn,cofr

AUTHOR

V. Raman, Oct 11 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 22:46 EDT 2021. Contains 347651 sequences. (Running on oeis4.)