OFFSET
1,1
COMMENTS
Prime factors counted without multiplicity. - Harvey P. Dale, Jul 04 2017
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
57 is in the sequence because the prime divisors of 57^2 + 1 = 3250 are {2, 5, 13}, and 57 - (2+5+13) = 37 is prime.
MAPLE
with(numtheory): for n from 1 to 2500 do:x:=n^2+1:y:=factorset(x):n1:=nops(y): s:=sum('y[i] ', 'i'=1..n1):if n> s and type(n-s, prime)=true then printf(`%d, `, n): else fi:od:
MATHEMATICA
spfpQ[n_]:=Module[{c=Total[FactorInteger[n^2+1][[All, 1]]]}, n>c && PrimeQ[ n-c]]; Select[Range[2500], spfpQ] (* Harvey P. Dale, Jul 04 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Sep 19 2012
STATUS
approved