login
A216897
a(n) = smallest m such that sigma(m)/m = n + 1/3.
0
3, 12, 1080, 18506880, 2198278051200, 28657168334177779210174055055360000
OFFSET
1,1
COMMENTS
An upper bound for a(7) is a 77-digit number with factorization: 2^35 3^20 5^9 7^3 11 13^2 17 19 23 29 31 37^2 41 61 67 71 73 109 137 409 521 547 1093 36809 368089.
An upper bound for a(8) is a 165-digit number that can be found on given link where line begins with 25/3.
LINKS
EXAMPLE
a(1) = 3 because sigma(3)/3 = 4/3 = 1 + 1/3 and 3 is the earliest m such that sigma(m)/m = 1 + 1/3.
CROSSREFS
Sequence in context: A132515 A279122 A246957 * A262541 A036300 A169815
KEYWORD
nonn
AUTHOR
Michel Marcus, Sep 19 2012
STATUS
approved