|
|
A169815
|
|
a(n) = lcm(1, 2, ..., n)^(n-1)/(n!*(n-1)!).
|
|
0
|
|
|
1, 1, 3, 12, 4500, 9000, 1512630000, 1452124800000, 111152892816000000, 3112280998848000000, 1849326140334157445511936000000, 388358489470173063557506560000000, 1607761625123067582500188167647056604083200000000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Consider a natural number n. Let t(k) denote the least common multiple (LCM) of {1, 2, ..., k} and Q(t(k)) denote the quotient of n when divided by t(k). Then the number M(n,k) of partitions of n with k parts can be expressed as a polynomial in Q(t(k)) with the leading coefficient (that is, the coefficient of Q(t(k))^(k-1)) c(k-1, k).
|
|
REFERENCES
|
S. R. Park, J. Bae, H. G. Kang and I. Song, "On the polynomial representation for the number of partitions with fixed length", Mathematics of Computation, vol. 77, no. 262, pp. 1135-1151, 2008.
|
|
LINKS
|
|
|
MATHEMATICA
|
f[n_] := n (LCM @@ Range@n)^(n - 1)/n!^2; Array[f, 15] (* Robert G. Wilson v, May 30 2010 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Iickho Song (i.song(AT)ieee.org), May 25 2010
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|