login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216757
a(n) = 6*a(n-1) - 9*a(n-2) + 3*a(n-3).
4
0, -3, -15, -63, -252, -990, -3861, -15012, -58293, -226233, -877797, -3405564, -13211910, -51254775, -198838152, -771371667, -2992450959, -11608875207, -45035307612, -174709321686, -677764787229, -2629310751036, -10200109386213, -39570153919641, -153507871295037
OFFSET
1,2
COMMENTS
a(n) = X(2*n-1)/sqrt(3), where X(n) = 3*X(n-2) - sqrt(3)*X(n-3), with X(0)=3, X(1)=0, and X(2)=6.
The Berndt-type sequence number 13 for the argument 2*Pi/9 defined by the relation a(n)*sqrt(3) = s(1)^(2*n-1) - s(2)^(2*n-1) + s(4)^(2*n-1), where s(j) := 2*sin(2*Pi*j/9). For the respective sums with the even powers of sines - see A215634.
We note that X(n) = s(1)^n + (-s(2))^n + s(4)^n -- see Witula's book for details. Moreover the numbers of the form a(n)*3^(-1-floor((n-1)/3)) are integers.
The following summation formulas hold: Sum_{k=3..n} a(k) = 3*(2*a(n-1) - a(n-2) + 1), X(2*n+1) - X(1)*3^n = X(2*n+1) = -sqrt(3)*Sum_{k=1..n} X(2*(n-k))*3^(k-1), and X(2*n) - X(0)*3^n = X(2*n) - 3^(n+1) = -sqrt(3)*Sum{k=1..n} X(2*(n-k))*3^(k-1).
REFERENCES
R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).
FORMULA
a(n) = 6*a(n-1) - 9*a(n-2) + 3*a(n-3).
G.f.: -3*x^2*(1 - x)/(1 - 6*x + 9*x^2 - 3*x^3).
a(n) = Sum_{k=0..n} 3*(-1)^k*(binomial(2*n-1, n+9*k+7) - binomial(2*n-1, n+9*k+1)). - Greg Dresden, Jan 28 2023
EXAMPLE
We have s(1)^5 - s(2)^5 + s(4)^5 = 5*(s(1)^3 - s(2)^3 + s(4)^3) = -15*sqrt(3), s(1)^9 - s(2)^9 + s(4)^9 = 4*(s(1)^7 - s(2)^7 + s(4)^7) = -252*sqrt(3),
39*(s(1)^11 - s(2)^11 + s(4)^11) = 10*(s(1)^13 - s(2)^13 + s(4)^13) = -38610*sqrt(3),
s(1)^7 - s(2)^7 + s(4)^7 = 4*(s(1)^5 - s(2)^5 + s(4)^5) + (s(1)^3 - s(2)^3 + s(4)^3) = -63*sqrt(3), and s(1)^15 - s(2)^15 + s(4)^15 = 1000*(s(1)^5 - s(2)^5 + s(4)^5) + 4*(s(1)^3 - s(2)^3 + s(4)^3) = -15012*sqrt(3).
We note that a(6) = 3*(a(5) + a(4) + a(3)).
MATHEMATICA
LinearRecurrence[{6, -9, 3}, {0, -3, -15}, 30]
CoefficientList[Series[-3*x^2*(1 - x)/(1 - 6*x + 9*x^2 - 3*x^3), {x, 0, 5 0}], x] (* G. C. Greubel, Apr 17 2017 *)
PROG
(PARI) concat(0, Vec(-3*(1-x)/(1-6*x+9*x^2-3*x^3)+O(x^99))) \\ Charles R Greathouse IV, Oct 01 2012
CROSSREFS
Cf. A215634.
Sequence in context: A229277 A218313 A218190 * A218366 A359082 A359083
KEYWORD
sign,easy
AUTHOR
Roman Witula, Sep 15 2012
STATUS
approved