OFFSET
1,2
COMMENTS
Numbers k with a record number of divisors, such that for all the divisors d of k the bitwise OR of k and d is equal to k (or equivalently, the bitwise AND of k and d is equal to d).
All the terms are odd since all the terms of A359080 are odd.
The corresponding numbers of divisors are 1, 2, 4, 6, 8, 10, 24, 32, 48, 96, 512, ... .
a(12) > 3*10^11, if it exists.
LINKS
MATHEMATICA
s[n_] := DivisorSum[n, 1 &, BitAnd[n, #] == # &]; seq={}; dm = 0; Do[d = DivisorSigma[0, n]; If[d > dm && d == s[n], dm = d; AppendTo[seq, n]], {n, 1, 2*10^7}]; seq
PROG
(PARI) lista(nmax) = {my(list = List(), ndmax = 0, d, s); for(n = 1, nmax, nd = numdiv(n); if(nd > ndmax && sumdiv(n, d, bitand(d, n)==d) == nd, ndmax = nd; listput(list, n))); Vec(list)};
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Amiram Eldar, Dec 15 2022
STATUS
approved